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1. Introduction 

This paper analyses the behaviour of stock prices in Ukraine by modelling the PFTS 

stock market index. Specifically, it examines its degree of dependence, noting that if the 

order of integration of the series is equal to 1, it is possible for the efficiency market 

hypothesis to be satisfied provided the differenced process is uncorrelated. Moreover, it 

tests the hypothesis of mean reversion (orders of integration below 1 in prices) or 

alternatively, long memory returns (orders of integration above 1 in the log prices) by 

using long memory and fractional integration techniques. These are more general than the 

standard approaches based on integer degrees of differentiation, and provide much more 

flexibility in modelling the dynamics of the process. F vided the die09yvTf
10.a9eferentiati .-iod o18.D
0prices)7D
.
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 Given the parameterisation in (4) we can distinguish several cases depending on 

the value of d. Thus, if d = 0, xt = ut, xt is said to be “short memory” or I(0), and if the 

observations are autocorrelated (i.e. AR) they are of a “weakly” form, in the sense that 

the values in the autocorrelations are decaying at an exponential rate; if d > 0, xt is said to 

be “long memory”, so named because of the strong association between observations far 

distant in time. If d belongs to the interval (0, 0.5) xt is still covariance stationary, while d 

≥  0.5 implies nonstationarity. Finally, if d < 1, the series is mean reverting in the sense 

that the effects of shocks disappear in the long run, contrary to what happens if d ≥ 1 

when they persist forever. 

There exist several methods for estimating and testing the fractional differencing 

parameter d. Some of them are parametric while others are semiparametric and can be 

specified in the time or in the frequency domain. In this paper, we use a Whittle estimate 

of d in the frequency domain (Dahlhaus, 1989) along with a testing procedure, which is 

based on the Lagrange Multiplier (LM) principle and that also uses the Whittle function 

in the frequency domain. It tests the null hypothesis: 

,dd:H oo =      (5) 

for any real value do, in a model given by the equation (4), where xt can be the errors in a 

regression model of the form: 

....,,2,1t,xzy tt
T

t =+β=    (6) 

where yt is the observed time series, β is a (kx1) vector of unknown coefficients and zt is 

a set of deterministic terms that might include an intercept (i.e., zt = 1), an intercept with 

a linear time trend (zt = (1, t)T), or any other type of deterministic processes. Robinson 

(1994) showed that, under certain very mild regularity conditions, the LM-based statistic 

:)r̂(  

,Tas)1,0(Nr̂ d ∞→→     (7) 
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where “ →d “ stands for convergence in distribution, and this limit behaviour holds 

independently of the regressors zt used in (6) and the specific model for the I(0) 

disturbances ut in (4). 

As in other standard large-sample testing situations, Wald and LR test statistics 

against fractional alternatives have the same null and limit theory as the LM test of 

Robinson (1994). Lobato and Velasco (2007) essentially employed such a Wald testing 

procedure, although it requires a consistent estimate of d; therefore the LM test of 

Robinson (1994) seems computationally more attractive. A semiparametric Whittle 
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Next we examine the volatility of the series measured as its absolute and squared 

returns.1 Both series are displayed in Figure 2 along with their corresponding 

correlograms and periodograms. It can be seen that the sample autocorrelation values 

now decay very slowly, and the periodograms display large peaks at the zero frequency. 
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and others. This method is essentially a local ‘Whittle estimator’ in the frequency 

domain, which uses a band of frequencies that degenerates to zero. The estimator is 

implicitly defined by: 

,log12)(logminargˆ
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where m is a bandwidth parameter, I(λs) is the periodogram of the raw time series, xt, 

given by: 
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and d ∈ (-0.5, 0.5). Under finiteness of the fourth moment and other mild conditions, 

Robinson (1995) proved that: 

,)4/1,0()ˆ( ∞→→− TasNddm do  

where do is the true value of d. This estimator is robust to a certain degree of conditional 

heteroscedasticity (Robinson and Henry, 1999) and is more efficient than other more 

recent semi-parametric competitors. 

[Insert Figure 3 and Table 4 about here] 

 Figure 3 displays the estimates of d for the return series and the absolute and 

squared returns, specifically the whole range of values of the bandwidth
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4. Conclusions 

In this paper we have examined the properties of the Ukranian stock market by estimating 

the order of integration of the PFTS series, daily, from January 9, 2007 until February 27, 

2013. The main findings are the following. First, the log-prices series is highly persistent, 

with an order of integration significantly above 1, which implies that stock returns are 

characterised by long memory behaviour. Second, the same feature is detected in the 

absolute and squared returns which are used as a measure of volatility. Finally, the 

analysis by day of the week produces evidence of higher degrees of dependence on 

Mondays and Fridays than on the other days of the week. 
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Figure 1: Time series plots, correlograms and periodograms 
i) PFTS stock market prices 

 

ii) Stock market returns 
 

iii) Correlogram of the stock market returns* 
 

iv) Periodogram of the tock market returns** 
 

*: The thick lines refer to the 95% confidence band for the null hypothesis of no autocorrelation. 
**: The horizontal axis refers to the discrete Fourier frequencies λj = 2πj/T, j = 1, …, T/2. 

 

 

0

4

0

0

8

0

0

1

2

0

0

1

6

0

0



 13

 
Figure 2: Absolute and squared returns, correlograms and periodograms 

Absolute returns Squared returns 
  

Correlogram absolute returns* Correlogram squared returns* 
  

Periodogram absolute returns** Periodogram squared returns** 
  

*: The thick lines refer to the 95% confidence band for the null hypothesis of no autocorrelation. 
**: The horizontal axis refers to the discrete Fourier frequencies λj = 2πj/T, j = 1, …, T/2. 
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Figure 3: Estimates of d based on the semiparametric approach of Robinson (1995) 

i) Stock market returns 
 

ii)  Absolute returns  
 

iii)  Squared returns 
 

The horizontal axis concerns the bandwidth parameter while the vertical one refers to the estimated value of d. 
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Table 5: Estimates of the fractional differencing parameter with white noise errors 
 No regressors An intercept A linear time trend 

Monday 1.017 
(0.952,   1.100) 

1.187 
(1.124,   1.366) 

1.187 
(1.124,   1.365) 

Tuesday 1.016 
(0.951,   1.099) 

1.144 
(1.085,   1.219) 

1.144 
(1.085,   1.218) 

Wednesday 1.013 
(0.949,   1.096) 

1.135 
(1.077,   1.208) 

1.135 
(1.077,   1.208) 

Thursday 1.013 
(0.948,   1.095) 

1.164 
(1.102,   1.244) 

1.164 
(1.102,   1.243) 

Friday 1.014 
(0.949,   1.097) 

1.212 
(1.146,   1.296) 

1.212 
(1.146,   1.295) 

   The values in parentheses give the 95% confidence band for the non-rejection values of d. In bold, the 
values corresponding to significant deterministic terms. 
 
 
Table 6: Estimates of the fractional differencing parameter with AR(1) errors 

 No regressors An intercept A linear time trend 

Monday 1392 
(1.280,   1.552) 

1.253 
(1.130,   1.413) 

1.252 
(1.130,   1.408) 

Tuesday 1.387 
(1.266,   1.542) 

1.222 
(1.121,   1.353) 

1.221 
(1.121,   1.350) 

Wednesday 1.376 
(1.258,   1.528) 

1.207 
(1.105,   1.327) 

1.206 
(1.105,   1.324) 

Thursday 1.375 
(1.256,   1.526) 

1.174 
(1.069,   1.293) 

1.173 
(1.069,   1.293) 

Friday 1.384 
(1.266,   1.537) 

1.228 
(1.095,   1.385) 

1.227 
(1.095,   1.380) 

   The values in parentheses give the 95% confidence band for the non-rejection values of d. In bold, the 
values corresponding to significant deterministic terms. 
 
 
Table 7: Estimates of the fractional differencing parameter with Bloomfield errors 

 No regressors An intercept A linear time trend 

Monday 1.012 
(0.911,   1.147) 

1.242 
(1.123,   1.400) 

1.242 
(1.123,   1.402) 

Tuesday 1.002 
(0.901,   1.147) 

1.231 
(1.111,   1.397) 

1.230 
(1.111,   1.386) 

Wednesday 1.003 
(0.902,   1.046) 

1.213 
(1.091,   1.366) 

1.212 
(1.091,   1.375) 

Thursday 0.991 
(0.906,   1.132) 

1.177 
(1.061,   1.321) 

1.177 
(1.061,   1.319) 

Friday 1.001 
(0.894,   1.131) 

1.219 
(1.102,   1.380) 

1.218 
(1.101,   1.377) 

   The values in parentheses give the 95% confidence band for the non-rejection values of d. In bold, the 
values corresponding to significant deterministic terms. 
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Table 8: Semiparametric estimates of d: Robinson (1995) and Abadir et al. (2007) 
Bandwith nb. Monday Tuesday Wednesday Thursday Friday 

5 0.130 0.128 0.138 0.154 0.138 
10 0.500 0.500 0.500 0.500 0.500 
15 0.101 0.089 0.093 0.106 0.105 

18*** 0.096 0.093 0.096 0.101 0.097 
20 0.084 0.093 0.100 0.095 0.085 
25 0.181 0.191 0.100 0.200 0.189 
30 0.186 0.182 0.191 0.198 0.192 

***: Bandwidth number corresponding to (T)0.5. 
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