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Abstract 

 

This paper analyses US sea level data using long memory and fractional integration 

methods. All series appear to exhibit orders of integration in the range (0, 1), which  

implies long-range dependence; further, significant positive time trends are found in the 

case of 29 stations located on the East Coast and the Gulf of Mexico, and negative ones 

in the case 4 stations on the North West Coast, but none for the remaining 8 on the West 

Coast. The highest degree of persistence is found for the West Coast and the lowest for 

the East Coast. 
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West coast the increase is around or below the GMSL rise of 1.7 mm year–1. The 

highest regional sea levels increases have been observed in Louisiana, Eastern Texas 

and the stretch from Virginia to New Jersey, which can be explained by Gulf Stream 

variations, land subsidence and tectonic movements (Zervas, 2009; Sweet et al., 2017). 

Future scenarios for the sea level rise are based on emissions and the associated 

risks. It is expected that GMSL will continue increasing during the 21st 
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methodology; Section 4 presents the empirical results; Section 5 offers some concluding 

remarks. 
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processes appear to be the most appropriate for geophysical/climate time series, since 

these tend to exhibit long-run dependence (LRD) or temporal correlations (Beran, 1994; 

Percival et al., 2001; Gil-Alana, 2006; Ercan et al., 2013; Graves et al., 2017). Such 

models range from those proposed by Hurst (1951) in hydrology, and later by 

Mandelbrot (1967) and Mandelbrot and Van Ness (1968) for self-similarity and the 

fractal dimension, to the AutoRegressive Fractionally Integrated Moving Average 

(ARFIMA) model of Granger and Joyeux (1980), and its subsequent extensions. 

Long-memory models have been widely used for climate variables such as 

temperature (Bloomfield, 1992; Caballero et al., 2002; Franzke, 2012; Gil-Alana, 2005, 

2008, 2018), but less for sea level data. In particular, there is very limited evidence 

concerning US tide gauge records. Jiang and Plotnick (1998) were the first to carry out 

fractal analysis using US coastline data with a continental dimension; applying the 
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In another recent study, Dangendorf et al. (2014) investigated sea level changes 

using 60 monthly average tide gauge records around the world. Their results from the 

Detrended Fluctuation Analysis -DFA2- (Kantelhardt et al., 2001) show, for all records, 

a LRD up to 35 years, which suggests the importance of the internal behaviour to 

understand sea level changes. By contrast, Becker et al. (2014) concluded that global 

and regional sea level changes are strongly driven by anthropogenic forces, in particular 

in the case of New York, Baltimore and San Diego. Finally, Royston et al. (2018) 

addressed the issue of residual noise when estimating linear trends, and showed that it is 

coloured but non-AR(1) in the majority of cases, the AR(1) model being more 

appropriate for shorter series (Bos et al., 2014). The inclusion of climate indices in the 

regression does not affect the choice of noise model: for San Francisco and Seattle, the 

preferred noise models are ARFIMA specifications, with a trend coefficient (including 

climate indices) of 2.37 and 2.71, respectively, while for Honolulu, the preferred model 

is the Generalized Gauss Markov (GGM) noise model, with an estimated trend 

coefficient of 1.29. The study by Royston et al. (2018) is the closest to ours, since we 

also consider long-range dependence models based on fractional integration and 

estimate the time trend coefficients allowing the errors to be fractionally integrated. 

   

3. Data and Methodology 

The data examined concern 41 US stations covering most of the US coast. Table 1 

reports the names of the stations and the percentage of coverage; we only consider 

series with a maximum of 10% missing data, and compute them as a simple arithmetic 

mean of the previous and following monthly value in the series. The data are available 

at  https://www.psmsl.org/data/obtaining/. 

TABLE 1 HERE 

https://www.psmsl.org/data/obtaining/
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the West coast) there is 
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Table 1: Time series examined and abbreviations 

Series Name 
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Table 4: Classification based on the time trend coefficient
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Table 5: Classification based on persistence 

0   <   d  <  0.5 

Stationarity 
0   <   d  <  1 

0.5  ≤  d  <  1 

Non-stationarity 
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Figure 1: Time trend coefficients. Summary of data extracted from Table 4. 

 

· Significant positive time trend;    · Insignificant time trend;   ·Significant negative time trend. 

 

 

Figure 2: Degree of persistence. Summar


